Electron Cooling Project: status and plans

Alexander Shemyakin

Schematic Layout of the Recycler Electron Cooling

Electron Cooling System Parameters

Electron Cooling Project: status and plans- A. Shemyakin

Stages of the project

Proof- of- principle experiment at NEC 1995-1999

Recirculation experiment at Wide Band 2001-2002

Full scale beam line at Wide Band 2003-2004

Commissioning of ECOOL in Recycler 2005

Recirculation experiment at WideBand

HISTORY

Feb 99: 5 MV Pelletron ordered.

Dec 00: 5 MV without vacuum tubes.

Mar 01: Tubes installed. Operations began.

May 01: First beam of 30 μ A in the collector.

Dec 01: 500 mA at 3.5 MV

Apr 02: NEC replaced acceleration tubes

Oct 02: 500 mA at 4.36 MeV

Nov 02: Shut down to install the full beamline

Recirculation experiment at WideBand

Main results

- Stable operation at 0.5 A, 3.5 MeV (99% duty factor)
- 1.7 A of maximum current at 3.5 MeV (6 MW)
- 0.6 A of maximum current at 4.36 MeV
- Electronics survives sparks

An additional Pelletron section was ordered to be installed in MI 31.

Full scale beam line at WideBand

The facility almost replicates the future MI 31 (shorter transfer lines and 9 instead 10 modules in the cooling section).

Current status

- cooling section magnetic fields measured
- beam line assembled and baked
- all diagnostics installed
- design of BPM electronics tested
- commissioning has started

Full scale beam line at WideBand

Stages

Beam in the collector	Jul 03
Final measurements of magnetic	
field in cooling section	Aug 03
Stable 0.5 A at 3.5 MeV	Dec 03
Cold beam at 0.5 A, 3.5 MeV	Mar 04

Cold beam in the cooling section

- The beam center moves along a straight line within 70 µrad. The straightness is controlled by 9 BPMs. The trajectory is adjusted by an entrance angle and by an average dipole field in each module of the cooling section.
- The boundary trajectory doesn't deviate from a straight line by more than 80 μrad in 90% of the cooling section length. The initial tuning of the envelope is done in a pulsed regime with a pencil-like beam. DC beam measurements are done with scrapers.

MI 31

- Construction started in March 03 and is now 20% complete
- Completion is scheduled for March 04
- Additional Pelletron section arrives in January 04

MI 31 as of June 03